

Health care worker isolation and management summary for COVID-19 - A rapid review of the evidence

Lucy E. Kirk 30/03/2020

ANU College of Health and Medicine COVID-19 Evidence Team

Suggested Citation: Kirk L., (30/03/20). *Health care worker isolation and management summary for COVID-19 - A rapid review of the evidence*. ANU College of Health and Medicine COVID-19 Evidence Team, Canberra, Australia.

Correspondence to:

Lucy E. Kirk
CHS COVID19 Rese

CHS COVID19 Research Assistant (Evidence)
Australian National University Medical School

M: +61 405 841 579 E: lucy.kirk@anu.edu.au

COVID19 CHS – Health care worker isolation and management summary from pre-existing guidelines

6/4/20, L KIRK

Acronyms:

- WHO: World Health Organization, CDNA: Communicable Diseases Network Australia, PPE: Personal protective equipment, HCW: Healthcare worker, NPIR: Negative pressure isolation room, AGP: Aerosol-generating procedure (including CPR, manual ventilation, intubation, bronchoscopy, suctioning)

Summary:

- HCWs should be isolated and tested for COVID19 if:
 - o (Fever ≥38dC or Hx of fever (night sweats, chills)) OR acute respiratory infection (cough, SOB, sore throat) (CDNA SoNG 26/03/20)
 - HCWs will be considered "close contacts" of a case if they:
 - Have direct contact w/ body fluids or lab specimens of a confirmed case w/o recommended PPE, or failure of PPE
 - Are in the same hospital room when an AGP is undertaken on a case w/o recommended PPE
 - Close contacts must complete 14 days isolation
 - Even if a close contact develops symptoms, is tested, and is "negative", they must complete the 14 days isolation
- Temperature and Sx monitoring of all staff and often visitors and all patients, is common → either at home, or on arrival to work → app or webform
 - o If screened positive for fever or Sx, refered to either fever clinic or staff clinic
 - Must remember may not always be effective due to a proportion of asymptomatic cases (~15-25%)
- Main contributing factors to HCW infections:
 - o 1. Lack of understanding of pathogen and lack of awareness of importance of PPE, lack of PPE, poor set-up of wards and equipment
 - o 2. Exposure to large numbers of infected patients and high risk procedures such as using nebulised medications and intubation
 - o 3. Pressure of treatment, work intensity and high nursing requirement, lack of rest
 - o 4. **Shortage** of PPE, and changes in PPE due to variable supply chain
 - o 5. Lack of adequate training difficult to provide systematic training and practice due to emergency response
- Other recommendations:
 - o Do not allow staff to work in multiple facilities
 - o Dedicated teams to COVID19 working in 4hr blocks (small teams, no unnecessary people), maintain logs of staff entering zones or rooms
 - o Restricted access to whole hospital for visitors and non-essential personnel (including medical students in countries like Singapore)
 - Screening of HCWs via body temp and symptoms
 - o Infection prevention training and PPE use, contingency plans for acquiring PPE
 - Dedicated ambulances can be used to transfer between facilities, and pick up those in quarantine who become Sx
 - o Ensure clear and timely communication to staff, ensure collaborative team spirit
 - o Patients with fever of unknown aetiology or acute respiratory Sx should be evaluated prior to ED entry, and the zoned according to risk
- Limited information and evidence for isolation of staff, however, does not seem uncommon in countries like China and Singapore
 - o Includes monitoring of temperature, symptoms and psychological stress

- o They also recommended on finishing working with COVID19 patients isolate for 14 days + neg PCR
- Three aims:
 - Stop staff nosocomial infections
 - Stop patient nosocomial infections
 - o Stop staff-family/community transmission
- Three checkpoints/transition zones:
 - o Before coming to work/shift
 - At work
 - Leaving work/after work
- Three questions:
 - o Do we need to screen staff? Temp +/- symptoms? What do we do if it is positive?
 - o What happens if staff have contact with a case?
 - O What happens when staff go home?

EVIDENCE BASE AND SOURCE

SUMMARY – RELATING TO HCW MANAGEMENT

Guideline: **COVID-19 CDNA National Guidelines for Public Health Units**¹

Version 2.4

Updated regularly: https://www1.health.gov.au/internet/main/publishi ng.nsf/Content/cdna-song-novel-coronavirus.htm

- Primarily for contact tracing and out-of-hospital management of individuals in isolation and details on PPE
- Helpful in regard to clarifying case definitions based on tests, clinical and epi criteria (see latest version of CDNA SoNG)
 - o **Confirmed**: tests positive for SARS-CoV-2 using a validated test
 - Probable: (Fever (≥38dC), or history of fever OR acute respiratory infection) AND household contact of confirmed OR PROBABLE case
 - O Suspect case: split into risk category based on clinical and epi features
- HCWs fall into "moderate risk" category should be isolated and tested if presenting with:
 - o Fever ≥38dC or Hx of fever (eg. Night swears, chills)
 - OR
 - o Acute respiratory infection cough, SOB, sore throat
- If resources become scarce, testing household contacts of confirmed or probable cases may not be indicated
 - These would then become "probable" cases
- For suspected cases who initially test negative for SARS-CoV-2, a risk assessment should be undertaken.
 - If high index of suspicion and no alternative diagnosis, consider continued isolation, use of PPE, further testing, and re-assessment (see CDNA).
- See most up to date CDNA SoNG regarding management of, and release of confirmed or probable cases from isolation.
 - o Release of HCWs from isolation is different from that of the general population (pg 10, v2.4)
- **Definition of "close contact"** regarding HCWs (not including home exposure, travel, ect.):
 - o Direct contact w/ body fluids or lab specimens of a confirmed case w/o recommended PPE, or failure of PPE
 - o A person in the same hospital room when an AGP is undertaken on a case w/o recommended PPE
- Even if a close contact develops symptoms, is tested, and is "negative", they must complete the 14 days isolation

Guideline: **Handbook of COVID-19 Prevention and Treatment²**

(This is the "big" handbook produced by The First Affiliated Hospital, Zhejiang University School of Medicine)

- TEAMs: Staff divided into different teams team max. 4hrs in an isolation ward.
 - o Teams should enter, and exit as a group to reduce frequency of staff movement in and out of isolation wards
 - Staff must wash themselves before going off duty
- HEALTH MONITORING:
 - Front line staff in isolation areas, including health personnel, medical technicians, property and logistics personnel shall live in isolation accommodation and shall not go out without permission
 - A "nutritious diet" shall be provided
 - o The temperature and symptoms of staff should be monitored and recorded each day
 - o Address psychological problems of staff with experts as they arise
 - When front-line staff, including healthcare staff, technicians, property and logistics personnel finish work in isolation and return to normal life → test using PCR → if negative, isolate collectively for 14 days → discharge

Article: **SARS in Taiwan: an overview** and lessons learned³

https://www.ijidonline.com/article/S1201-9712(04)00176-6/fulltext

- Hospital staff and patients with exposure to SARS patients were quarantined in a healthcare facility for 14 days (later changed to 10 days)
 - o All others were quarantined at home
 - o Those in quarantine had food delivered three times a day by public health nurses
 - Body temperature and symptoms were self-monitored three times a day, and then reported by phone to the nurse
- SARS containment teams were set up by CDC and teaching hospitals
 - They would observe and demonstrate the recommended SARS infection control practices and provide PPE

Article: Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study⁴

https://doi.org/10.1111/j.1365-3156.2009.02255.x

- HCWs accounted for between 19.2% 41% of cases of SARS
- This is a case-control study of HCWs that were both exposed to SARS at a hospital in Beijing
- Factors increasing risk of infection:
 - Emergency care >1hr
 - o Contact with respiratory secretions, sputum, other path specimens, and the deceased
 - o Intubation and chest compressions
- Protective factors:
 - Wearing glasses or protective goggles
 - Wearing a mask, gloves, and multiple layers of protective gowns
 - TAKING TRAINING IN INFECTION CONTROL
- PHASE ONE: lack of familiarity and training regarding infection control, and poor set-up of wards and lack of equipment
- LATER PHASE: when staff had adequate training and infection control practices were established and enforced

Preprint: Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China⁵

https://doi.org/10.1016/j.jhin.2020.03.002

- Survey of workforce: ~60% nurses, 5.8% had worked during SARS
- Of those infected, 2.7% healthcare workers, compared to 21.1% during SARS
- Contributing factors:
 - o 1. Lack of understanding of pathogen and awareness of importance of PPE
 - o 2. Exposure to large numbers of infected patients
 - o 3. Pressure of treatment, work intensity, lack of rest
 - 4. Shortage of PPE
 - o 5. Lack of adequate training difficult to provide systematic training and practice due to emergency response
- Key points: awareness of PPE, sufficient PPE, proper training and preparedness\

Article: Epi of COVID-19 in a longterm. Care facility in King Country, Washington⁶

https://www.nejm.org/doi/full/10.1056/NEJMoa200 5412?fbclid=IwAR2CZrt0xZO0QM5yA62tTAiFCGMi4ApCTRDdAkEXW8iGveW6k3klErh_ql

Article: **SARS and Healthcare Workers**⁷

HTTPS://DOI.ORG/10.1179/OEH.2004.10.4.421

***This article provides a good summary of the psychological stress placed on workers during SARS – sounds very very very similar to rhetoric at the moment

Comment: Staff safety during emergency airway management for COVID-19 in Hong Kong⁸

https://doi.org/10.1016/S2213-2600(20)30084-9

- Outbreak of 167 cases in a long-term care facility, including 50 HCWs and 16 visitors
- Factors that contributed to facility vulnerability:
 - Staff working in more than one facility
 - Unfamiliar to PPE recommendations, inadequate supplies of PPE and other items such as hand sanitiser
 - Frequent changes in PPE types due to supply chain disruption need staff to supervise for proper PPE use
 - o Delayed case recognition due to low index of suspicion, limited tested
- Implemented:
 - o Restricted access for visitors and non-essential personnel
 - Screening of HCWs via body temp and symptoms
 - o Clinical monitoring of residents, social distancing, reduced resident movement and activites
 - o Infection prevention training and PPE use, contingency plans for acquiring PPE
- Phases of HCW infections throughout the SARS epidemic:
 - 1. HCWs did not know what they were dealing with → did not have PPE, used nebulised medication
 - 2. HCWs realised what they were dealing with → used PPE but had inadequate supply, poor ward set-up, and lack of familiarity and training regarding infection-control
 - Later: non-regular staff caring for SARS patients with little experience, high risk procedures such as intubation, and caring for patients requiring extensive nursing care
- High risk procedures: intubation (particularly with excessive bagging and in ward rather than ICU), nebulised medications
- Required early identification and isolation of patients:
 - $\circ\quad$ Set-up one floor for triage, other floors or wards as step-down
 - o Teams of doctors and nurses to provide care for patients in designated area
- Facilities either actively or passively conducted surveillance for fever and respiratory symptoms among workers and visitors
 - SARS screening questionnaire before being permitted − if did not pass screening (Qs or temp. check) → ED
- NIV, HFNC, bag-mask ventilation and intubation are high risk for aerosol generation
- Should be performed in NPIR with correct PPE including double gloving
- Discourage use of NIV or HFNC providing 6L/min or more of oxygen unless have access to NPIR
- Intubation performed by expert with backup airway plans ready
- Reduce time of bag-mask ventilation if manual bagging is required, supraglottic devices are preferred
- Ensure continuous waveform capnography
- RIS is technique of choice. Rocuronium over suxamthonium may be preferred due to longer half-life use dose of 1.2mg/kg to achieve onset time similar to suxamthonium

Report: Quarantine and isolation: Lessons learned from SARS⁹

Report to CDC

Guideline: COVID-19 – Infection Prevention and Control in the Hospital Setting (WA Health)¹⁰

https://ww2.health.wa.gov.au/~/media/Files/Corpor ate/general%20documents/Infectious%20diseases/P DF/Coronavirus/Infection%20Prevention%20and%20 Control%20in%20Hospitals.pdf

Comment: Initiation of a new infection control system for the COVID-19 outbreak¹¹

https://doi.org/10.1016/S1473-3099(20)30110-9

- (Very large document... relevant bits included)
- Countries had issues with staff reluctance to care for SARS patients, different countries took different approaches
 - o Punishment: Fining staff, firing staff, banning them from continuing practicing medicine...
 - o Incentivising: allowance 5* normal pay, "danger money"
- Many countries had high staff infection rates and nosocomial infection rates, but Singapore instituted:
 - Stringent temperature checks of all staff and patients → would quarantine staff when clusters of fevers were identified
 - Use of PPE → use of infection control measures was audited
 - o Isolation of staff working with SARS
 - o No visitors, except one for paeds and one for obstetrics (videoconferencing)
 - Dedicated ambulances for suspected and probable cases also used to pick up patients from quarantine who had gone on to develop SARS symptoms
 - Had designated SARS treatment hospital
- Dedicated teams of staff should manage the suspected or confirmed case to minimise risk to other HCWs and patients
 - o Ensure consideration of rostering to avoid fatigue of HCWs
 - o Maintain a log of all staff entering the room or area of suspected or confirmed cases
- Reduce number of staff potentially exposed to suspected or confirmed cases ensure administrative, research or other non-clinical staff are segregated away from patients
- Avoid wearing uniforms home launder uniforms at the facility
- Consider staff at higher risk of severe COVID19 infection, including: pregnant staff, chronic respiratory conditions, morbidly obese, chronic illness (cardiac disease, DM, CKD, immunosuppression, chronic neuro conditions)
- HCWs using correct infection control measures and PPE whilst caring for a confirmed case are NOT considered close contacts unless there was a breach of PPE
- If a HCW develops signs and symptoms of acute illness, fever, cough or SOB, they should:
 - $\circ\quad \text{Cease work, or not turn up to work}\\$
 - o Contact their manager and infection control
 - Seek medical attention

- Development of an innovative **observational infection-control system** for negative pressure (NP) isolation wards

- Always a risk of HCWs not being fully aware of exposure whilst caring for patients
- Cameras cover the entire ward except privacy areas
- Observer monitors all HCWs in real-time via computer monitors in a separate area, but maintains communication with staff
- Infection control observers underwent intensive training of infection control requirements; role is to:
 - Maintain normal operation of NP ward, supervise disinfection, ensure sufficient supply of equipment, arrange for specimens for inspection, and relieve anxiety of HCWs caring for patients
 - Also supervise donning and doffing

Preprint: Preventing intra-hospital infection and transmission of COVID19 in healthcare workers¹²

https://doi.org/10.1016/j.shaw.2020.03.001

- All HCWs should have attended multiple training sessions and drills, however, steps may be omitted or overlooked
- Allows for real-time feedback to staff, problem-solving, and risk assessment for staff prevent nosocomial infection
- Report of Singapore's strategy to aim for zero occupational infections using root cause analysis
- 1. Segregation of healthcare teams caring for suspect and confirmed cases of COVID19, vs teams caring for others
- 2. Tasks should be risk-stratified to determine the appropriate PPE for the worker
 - Eg. AGPs (full PPE including eye protection and respirator), vs triaging at fever clinic
- 3. Rapid testing to ensure early identification and segregation of patients (RT-PCR in 3-4hrs)
- 4. Twice daily temp. monitoring for all HCWs
 - o Government developed IT platform for HCWs to log details, symptoms and temperature recordings remotely
 - o Temp. above 37.5 dC is followed up by hospital clinical epi team
- 5. Suspend cross-institutional coverage by medical staff limit practise to one primary institution
 - o Keep care teams small, meal-times are staggered, teaching and meetings via videoconferencing
 - Medical students withdrawn from clinical attachments
- 6. Avail manpower and PPE for frontline work
 - o Learning from SARS, Singapore had a stockpile of PPE
- 7. Ensure clear and timely communications to staff enables their work and interactions with the public
- 8. Clear directions from leadership and collaborative team spirit
 - Acknowledge increased work hours, increased stress and risk, and fatigue from regular donning and doffing
 - o Peer support programs, facilitate senior workers to provide encouragement, self-care tips and psychological first aid
- 9. All visitors and outpatients to undergo screening questionnaire and thermal scanning for fever, and reduced visitors

Preprint: **Escalating infection control** response to the rapidly evolving epidemiology of the COVID-19 due to SARS-CoV-2 in Hong Kong¹³

https://doi.org/10.1017/ice.2020.58

Preprint: **Epi, Clinical Characteristics** and Outcome of Medical Staff infected with COVID-19 in Wuhan,

China: A Retrospective Case Series Analysis¹⁴

https://www.medrxiv.org/content/10.1101/2020.03. 09.20033118v1

- Use of increased level of PPE for all AGPs (ie. To airborne precautions) even if w/o features or epi risk factors for COVID19
- Use of surgical masks by all HCWs, patients and visitors, increased hand hygiene
- Important to note the viability of SARS-CoV-2 → SARS-CoV had viability on smooth surfaces for up to 5 days
- Quarantine of HCWs for 14 days following unprotected exposure
- Analysis of 64 confirmed cases of COVID-19 in staff in Wuhan, China.
- 67% nurses
- 5% had contact w/ specimens, 8% fever clinics, 5% isolation wards
- Fever most common symptoms (67%), cough 47%, fatigue 34%
 - Others: sore throat, myalgia, chest tightness, sputum, headache, chill, decreased appetite, diarrhoea, chest pain
- Majority of staff infected in China were in early stages of the outbreak, when there was lack of knowledge regarding transmission and experience.

0	" hospital-related transmission is not the main transmission feature of COVID-19 in China. Our findings
	advocate this viewpoint."

Article: The incubation period of COVID-19 from publicly reported confirmed cases: estimation and application¹⁵

10/03/20

Nice simple summary https://annals.org/AIM/FULLARTICLE/2762808/INCU BATION-PERIOD-CORONAVIRUS-DISEASE-2019-COVID-19-FROM-PUBLICLY-REPORTED

Preprint: Epidemiology and transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts¹⁶

https://doi.org/10.1101/2020.03.03.20028423

- Pooled analysis of 181 confirmed cases with known exposure and symptom onset windows
- Median incubation 5.1 days (95%CI; 4.5-5.8)
- 97.5% develop symptoms within 11.5 days
 - o "[we] expect that nearly all infected persons who have symptoms will do so within 12 days of infection."
 - o Only 101 out of 10 000 cases will develop symptoms after 14 days of monitoring
- Exclusion of cough or sore throat → median incubation to onset of fever 5.7 days (4.9 6.8)
 - o 97.5% have a fever within 12.5 days
- Analysis of 391 cases of COVID19 in Shenzhen and their close contacts (lived in the same apartment, meal, travel, social)
 - o Casual contacts (other clinic patients) and close contacts wearing a mask were not included
 - o Close contacts were isolated and monitored for 14 days, with PCR tests at the beginning and end of isolation
 - Compared to symptom surveillance at travel hubs and homes
 - Median incubation 4.8 days, 95% who develop symptoms, will do so in 14 days
- Median time to recover 22 days in 50-59 yr age group
- Secondary attach rate for household contacts of 15.8% (95%Cl12.9,19.4), and 10.3% (8.4,12.6) overall
 - o Rate of infection for those under 10yrs was similar to the general cohort population (7.4 vs. 7.9%)
- Contact-based surveillance reduced days from symptom onset to isolation 2.2 days (95%CI:1.7,2.6), compared to 3.4 days for symptom-based surveillance (3.1,3.7)
- Using data from contact-based surveillance, 19.5% were asymptomatic, and 28.7% were afebrile at time of the positive PCR
- "This work further supports the picture of COVID-19 as a disease with fairly short incubation period (4-6 days) but a long clinical course..."

Meta-analysis of clinical characteristics of patients with SARS-CoV-2 infection (no specification of when during infection):

Article: Clinical characteristics of hospitalised patients with SARS-CoV-2 infection: A single arm meta-analysis

https://onlinelibrary.wiley.com/doi/10.1002/jmv.25735

- Fever 89%, Cough 72%, Muscle soreness or fatigue 43%
 ARDS 15%, Abnormal chest CT 97%
 - Severe cases 18%, case fatality 4.3%

Article: SARS-CoV-2 and COVID-19: The most important research questions¹⁷

- Absence of fever in SARS-CoV2 infection is more common (~12%) compared to SARS (1%) and MERS (2%)
 - o Changes effectiveness of fever surveillance
 - o Also unclear viral load and shedding meaning timeline of infectionous is unknown
- For SARS, a highly sensitive case definition was used with a focus on fever or respiratory Sx with epi link

Comment: Can we contain the COVID-19 outbreak with the same measures as for SARS?¹⁸

https://doi.org/10.1016/S1473-3099(20)30129-8 https://dx.doi.org/10.1186%2Fs13578-020-00404-4

Article: Quantitative evaluation of infection control models in the prevention of nosocomial transmission of SARS virus to healthcare workers: Implication to nosocomial viral infection control for healthcare workers¹⁹

https://doi.org/10.3109/00365540903582400

Article: Preparing for a COVID19 pandemic: a review of operating room outbreak response measures in.
a large tertiary hospital in
Singapore²⁰

https://link.springer.com/article/10.1007/s12630-020-01620-9#citeas

Good article - not fully summarised here

Article: Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19²¹

- Strict PPE use, restricted visitors and staff movement
- Separate triage facilitites for those with fever or Sx
- o All workers required to use PPE and N95 or all patients, irrespective of if SARS was suspected or not
- Temperature screening twice daily for HCWs → if positive, isolated until ruled out
- Beijing rapidly built SARS hospitals
- For COVID19 → concerns regarding asymptomatic or pre-symptomatic transmission
 - Mild disease, and potential asymptomatic spread makes control more difficult
- Time-dependent analysis of nosocomial infection in HCWs in 16 hospitals in Taiwan following SARS
- Evaluated effectiveness of five interventions:
 - Triage of patients with fever of unknown etiology outside ED (before entry) → then zoned according to risk
 - o Installation of hand washing stations in ED
 - o Implementation of routing from ED to isolation ward
 - o Fever screening station outside ED
 - Hand washing stations throughout the hospital
- Triage of patient with fever of unknown etiology outside ED (traffic bundling) was most effective
- HCWs were at highest risk of nosocomial infection with SARS in ED isolating patients early was most effective
- Review of preparation of a large hospital in Singapore (1700 beds)
- Reduced elective surgery
- Screened all patients presenting to hospital with screening questionnaire → all who had suspected COVID19 were isolated and tested
- Restricted visitors, staff asked to stop unnecessary travel
- Temp of staff screened twice daily → entered into electronic records using web-based forms → could be accessed via smartphone → if Sx developed, screened at staff clinic
- Staff resources were made available, including a helpline to reduce burnout and anxiety
- Three separate ORs for suspected or confirmed cases separate from main complex
- Clear signage and instructions for donning and doffing
- Training for PPE use and PAPR, all fit-checked for respirators, given personal goggles
- Postoperative visits were conducted via phonecall
- For all teams caring for a COVID19 patient in theatre, an OR coordinator was assigned and oversaw allocation of roles and infection prevention
- Modelling of traveller arrival screening (just summarised relevant points)
- Must consider:
 - o Incubation period time period since exposure (med. ~5.5)
 - O Subclinical cases (no fever or cough) particularly children/teens (best case scenario 5%, middle 25%, worst 50%)

https://dx.doi.org/10.7554%2FeLife.55570	 Sensitivity of thermal scanners (if used) Truthfulness of reporting symptoms on questionnaires Screening failure arises primarily from undetectable cases
POTENTIAL ASYMPTOMATIC TRANSMISSION	 There is evidence of viral load and positive RT-PCR, BEFORE symptomatic illness²² Viral load of asymptomatic patients may be similar to that of symptomatic patients, which suggests transmission may occur from asymptomatic or minimally symptomatic patients²³ Evidence from the Diamond Princess cruise ship showed the estimated asymptomatic proportion was 17.9% (95%CrI15.5-20.2)²⁴
Article: Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS- CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0) ²⁵ https://www.tandfonline.com/doi/pdf/10.1080/2222 1751.2020.1735265?needAccess=true	 Nice succinct summary of pre-COVID19 staff testing and exclusion criteria, investigations that should be performed on presentation and when diagnosis confirmed. Patients tested for COVID19 – single room isolation Confirmed diagnosis – transfer to designated COVID19 hospital
Guideline: The Australian and New Zealand Intensive Care Society (ANZICS) — COVID19 Guidelines (Version 1) ²⁶ https://www.anzics.com.au/wp- content/uploads/2020/03/ANZICS-COVID-19- Guidelines-Version-1.pdf	 Simple and clear operational guidelines for ICUs, including: reducing ICU demand, increasing ICU capacity, decision making, infection control, and treatment of COVID19 patients Recommend: Clean scrubs to be changed into before each shift Showering facilities at the end of each shift Provision of meals and drinks for frontline staff Consider: Staff temperature and symptom checks at the start of each shift Dedicated roster of "clean teams" and "COVID19 teams"

Risk factors for severe disease and poor prognosis SOURCE SUMMARY

Letter/comment: Characteristics of and
important lessons from the Coronavirus
Disease 2019 (COVID-19) Outbreak in

China²⁷

- Descriptive study of 72 314 COVID19 patients from mainland China
- Severity: 81% mild, 14% severe, 5% critical
- Case fatality rate (CFR): 2.2% overall, 14.8% of those ≥80yrs, 49.0% in critical
- Healthcare personnel infection rate: 3.8%
- Risk factors for severe disease:
 - Increasing age (70-79yrs CFR 8.0%)
 - Cardiovascular disease CFR 10.5%
 - Diabetes CFR 7.3%
 - Chronic respiratory disease CFR 6.3%
 - o HTN 6.0%
 - o Cancer 5.6%

Article: Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China²⁸

https://www.thelancet.com/journals/lancet/article/piis0140-6736(20)30183-5/fulltext

Article: Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study²⁹

(Very helpful overview) https://doi.org/10.1016/s0140-6736(20)30566-3

- Descriptive study of 41 confirmed cases of COVID19 in Wuhan six deaths (15%)
- Sx at onset: fever 98%, cough 76%, myalgia or fatigue 44%, sputum 28%, headache 8%, haemoptysis 5%
- 55% developed dyspnoea, median duration from illness onset to dyspnoea of 8.0 days
- Median time from onset to admission of 7.0 days, 9.0 days to ARDS, 10.5 days for ICU admission and mechanical ventilation
- All had CT abnormalities on admission (commonly bilateral ground-glass opacities and subsegmental consolidation)
- Complications: all had pneumonia, 29% ARDS, 12% acute cardiac injury, 10% secondary infection
- 5% refractory hypoxaemia with ECMO salvage
- Descriptive study of 191 confirmed cases of COVID19 in Wuhan 54 deaths (2.8%)
- Factors associated with increased risk of mortality:
 - o Age, HTN, diabetes, coronary artery disease, chronic obstructive lung disease, chronic kidney disease
 - On admission: D-dimer >1ug/mL, higher SOFA, elevated cardiac troponins, elevated LDH, lymphopaenia
- Sx on admission: fever 94%, cough 79%, sputum 23%, myalgia 15%, fatigue 23%
- Disease severity: 35% severe, 11% critical
- Median time from onset to admission of 11.0 days, med. time to ventilation 14.5, med to death 18.5 days
 - ECMO used in three none survived
- Imaging features: consolidation 59%, ground-glass opacities 71%, bilateral infiltrating pneumonia 75%
- Complications: sepsis 59%, resp failure 54%, ARDS 31%, heart failure 23%, septic shock 20%, coagulopathy 19%, AKI 15%

REFERENCE LIST

- 1. Communicable Diseases Network Australia. COVID-19: CDNA National guidelines for public health units 2020 [updated 26th March. Available from: https://www1.health.gov.au/internet/main/publishing.nsf/Content/cdna-song-novel-coronavirus.htm.
- 2. The First Affiliated Hospital (Zhejiang University School of Medicine). Handbook of COVID019 Prevention and Treatment. Zhejiang, China: Zhejiang University School of Medicine; 2020.
- 3. Chen K-T, Twu S-J, Chang H-L, Wu Y-C, Chen C-T, Lin T-H, et al. SARS in Taiwan: an overview and lessons learned. International Journal of Infectious Diseases. 2005;9(2):77-85.
- 4. Liu W, Tang F, Fang L-Q, De Vlas SJ, Ma H-J, Zhou J-P, et al. Risk factors for SARS infection among hospital healthcare workers in Beijing: a case control study. Tropical Medicine & International Health. 2009;14(s1):52-9.
- 5. Wang J, Zhou M, Liu F. Reasons for healthcare workers becoming infected with novel coronavirus disease 2019 (COVID-19) in China. Journal of Hospital Infection.
- 6. McMichael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG, et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. New England Journal of Medicine. 2020.
- 7. Chan-Yeung M. Severe Acute Respiratory Syndrome (SARS) and Healthcare Workers. International Journal of Occupational and Environmental Health. 2004;10(4):421-7.
- 8. Cheung JC-H, Ho LT, Cheng JV, Cham EYK, Lam KN. Staff safety during emergency airway management for COVID-19 in Hong Kong. The Lancet Respiratory Medicine.
- 9. Rothstein MA, Alcalde MG, Elster NR, Majumder MA, Palmer LI, Stone TH, et al. Quarantine and isolation: Lessons learned from SARS. United States of America: Institute for Bioethics, Health Policy and Law: University of Louisville School of Medicine : 2003.
- 10. Department of Health (Western Australia). Coronavirus Disease-19 (COVID-19) Infection Prevention and Control in the Hospital Setting 2020 [Available from:

https://ww2.health.wa.gov.au/~/media/Files/Corporate/general%20documents/Infectious%20diseases/PDF/Coronavirus/Infection%20Prevention%20and%20Control%20in%20Hospitals.pdf.

- 11. Chen X, Tian J, Li G, Li G. Initiation of a new infection control system for the COVID-19 outbreak. The Lancet Infectious Diseases. 2020;20(4):397-8.
- 12. Hoe Gan W, Wah Lim J, Koh D. Preventing intra-hospital infection and transmission of COVID-19 in healthcare workers. Safety and Health at Work. 2020.
- 13. Cheng VCC, Wong S-C, Chen JHK, Yip CCY, Chuang VWM, Tsang OTY, et al. Escalating infection control response to the rapidly evolving epidemiology of the Coronavirus disease 2019 (COVID-19) due to SARS-CoV-2 in Hong Kong. Infection Control & Hospital Epidemiology.1-24.
- 14. Liu J, Ouyang L, Guo P, Wu Hs, Fu P, Chen Yl, et al. Epidemiological, Clinical Characteristics and Outcome of Medical Staff Infected with COVID-19 in Wuhan, China: A Retrospective Case Series Analysis. medRxiv. 2020:2020.03.09.20033118.
- 15. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Annals of Internal Medicine. 2020.

- 16. Bi Q, Wu Y, Mei S, Ye C, Zou X, Zhang Z, et al. Epidemiology and Transmission of COVID-19 in Shenzhen China: Analysis of 391 cases and 1,286 of their close contacts. medRxiv. 2020:2020.03.03.20028423.
- 17. Yuen KS, Ye ZW, Fung SY, Chan CP, Jin DY. SARS-CoV-2 and COVID-19: The most important research questions. Cell & bioscience. 2020;10:40.
- 18. Wilder-Smith A, Chiew CJ, Lee VJ. Can we contain the COVID-19 outbreak with the same measures as for SARS? The Lancet Infectious Diseases.
- 19. Yen M-Y, Lu Y-C, Huang P-H, Chen C-M, Chen Y-C, Lin YE. Quantitative evaluation of infection control models in the prevention of nosocomial transmission of SARS virus to healthcare workers: Implication to nosocomial viral infection control for healthcare workers. Scandinavian Journal of Infectious Diseases. 2010;42(6-7):510-5.
- 20. Wong J, Goh QY, Tan Z, Lie SA, Tay YC, Ng SY, et al. Preparing for a COVID-19 pandemic: a review of operating room outbreak response measures in a large tertiary hospital in Singapore. Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 2020.
- 21. Gostic K, Gomez AC, Mummah RO, Kucharski AJ, Lloyd-Smith JO. Estimated effectiveness of symptom and risk screening to prevent the spread of COVID-19. Elife. 2020;9:e55570.
- 22. Pan Y, Zhang D, Yang P, Poon LLM, Wang Q. Viral load of SARS-CoV-2 in clinical samples. The Lancet Infectious Diseases. 2020;20(4):411-2.
- 23. Zou L, Ruan F, Huang M, Liang L, Huang H, Hong Z, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. New England Journal of Medicine. 2020;382(12):1177-9.
- 24. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance. 2020;25(10):2000180.
- 25. Li T. Diagnosis and clinical management of severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2) infection: an operational recommendation of Peking Union Medical College Hospital (V2.0). Emerging microbes & infections. 2020;9(1):582-5.
- 26. ANZICS COVID-19 Working Group. The Australian and New Zealand Intensive Care Society (ANZICS) COVID-19 Guidelines (Version 1). Melbourne, Victoria: Australian and New Zealand Intensive Care Society; 16th March 2020.
- 27. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. Jama. 2020.
- Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020;395(10223):497-506.
- 29. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet (London, England). 2020.